بررسی عملکرد شبکه های عصبی در بر آورد تبخیر و تعرق گیاه مرجع (مطالعه موردی: ایستگاه سینوپتیک اهواز)
نویسندگان
چکیده
تبخیر و تعرق یکی از پارامترهای مؤثر بر بیلان آبی حوضه های آبریز و از اجزای اصلی چرخه هیدرولوژیکی محسوب میشود. به علت نیاز به برگ خریدهای اقلیمی مختلف و اثر متقابل این برگ خریدها برهم دیگر تبخیر و تعرق یک پدیده غیرخطی و پیچیده می باشد. یکی از مراحل پیچیده در مدل سازی سیستم های غیرخطی، پیش پردازش پارامترهای ورودی جهت انتخاب ترکیبی مناسب است. در این پژوهش امکان استفاده از شبکه های mlp,mnn و ff برای تخمین تبخیر و تعرق گیاه مرجع مورد مطالعه قرار گرفته است و در این راستا از نرمافزار matlab کمک گرفته شد. با استفاده از سری داده های هواشناسی سال های 93 – 1377 ایستگاه اهواز، ابتدا مقادیر متوسط تبخیر و تعرق روزانه گیاه مرجع از روش استاندارد فائوپنمنمانتیث محاسبه شد، سپس با استفاده از این مقادیر به عنوان خروجی های هدف، شبکه های مختلفی با ساختارهای متعارف تعریف و آموزش داده شد. درنهایت قابلیت شبکه برای تخمین تبخیر و تعرق با استفاده از قسمتی از داده ها که در طراحی و یا آموزش شبکه استفاده نشده است، موردبررسی قرار گرفت. با بررسیها انجام گرفته مشخص شد که تنها با استفاده از پارامتر دمای متوسط روزانه به عنوان ورودی، می توان میزان تبخیر و تعرق گیاه مرجع را با استفاده از سه نوع شبکه با دقت قابل قبولی تخمین زد. هم چنین با مقایسه نتایج حاصل از سه شبکه با آزمون های آماری مشخص شد که شبکه هایff و mlp با r²بیشتر نسبت به mnn در تعیین تبخیر و تعرق گیاه مرجع از دقت بیش تری برخوردار می باشند.
منابع مشابه
بررسی عملکرد شبکههای عصبی در برآورد تبخیر و تعرق گیاه مرجع (مطالعه موردی: ایستگاه سینوپتیک اهواز)
تبخیر و تعرق یکی از پارامترهای مؤثر بر بیلان آبی حوضههای آبریز و از اجزای اصلی چرخه هیدرولوژیکی محسوب میشود. به علت نیاز به برگ خریدهای اقلیمی مختلف و اثر متقابل این برگ خریدها برهم دیگر تبخیر و تعرق یک پدیده غیرخطی و پیچیده میباشد. یکی از مراحل پیچیده در مدلسازی سیستمهای غیرخطی، پیش پردازش پارامترهای ورودی جهت انتخاب ترکیبی مناسب است. در این پژوهش امکان استفاده از شبکههای MLP,MNN و FF ب...
متن کاملپیشبینی تبخیر-تعرق مرجع ایستگاه سینوپتیک اهواز با استفاده از مدل ترکیبی موجک – شبکه عصبی GMDH
سابقه و هدف: تخمین دقیق مقدار تبخیر-تعرق مرجع برای انجام بسیاری از تحقیقات ضروری و از مهمترین مسائل در طرحهای آبیاری و زهکشی و منابع آب به شمار میرود. یکی از این مسائل که میتواند در راستای اهداف ذکرشده اعمال شود، پیشبینی تبخیر-تعرق مرجع برای آینده است تا بتوان با برنامهریزیهای مناسب، امکان استفاده بهتر از منابع موجود را فراهم نمود (7). در سالهای اخیر استفاده از روشهای هوش مصنوعی و مدل ...
متن کاملبرآورد تبخیر و تعرق گیاه مرجع (ET0) در ایستگاه های سینوپتیک استان تهران
تبخیر و تعرق یکی از پارامترهای مهم در مباحث کشاورزی و هیدرولوژی است. از این رو برآورد دقیق آن می تواند سبب کاهش اتلاف منابع آب و مدیریت صحیح در برنامه ریزی گردد. در این پژوهش به منظور برآورد مقادیر تبخیر و تعرق گیاه مرجع (ET0) در ایستگاههای سینوپتیک منتخب استان تهران، از روش استاندارد فائو پنمن مانتیث استفاده شد. بررسی ها نشان داد در صورت وجود دمای بالا، سرعت باد می تواند به عنوان م...
متن کاملارزیابی مدل های تبخیر- تعرق گیاه مرجع برای اقلیم گرم و خشک (مطالعه موردی: ایستگاه سینوپتیک زاهدان)
سابقه و هدف: تبخیر- تعرق (ET) مهمترین پارامتر در مطالعات اقلیمی و هیدرولوژیکی همچنین در مدیریت و برنامهریزی آبیاری می-باشد. برآورد تبخیر- تعرق مرجع (ETo) به روشی ساده، مورد توجه زیادی، بهخصوص در کشورهای توسعه یافته، که در آن اطلاعات هواشناسی مورد نیاز برای روش استاندارد پنمن- مونتیث فائو (PMF-56) تاقص و یا در دسترس نمیباشد، قرار گرقته است. لذا هدف این تحقیق، ارزیابی و مقایسه 30 روش مختلف بر...
متن کاملپیش بینی تبخیر-تعرق مرجع ایستگاه سینوپتیک اهواز با استفاده از مدل ترکیبی موجک – شبکه عصبی gmdh
سابقه و هدف: تخمین دقیق مقدار تبخیر-تعرق مرجع برای انجام بسیاری از تحقیقات ضروری و از مهم ترین مسائل در طرح های آبیاری و زهکشی و منابع آب به شمار می رود. یکی از این مسائل که می تواند در راستای اهداف ذکرشده اعمال شود، پیش بینی تبخیر-تعرق مرجع برای آینده است تا بتوان با برنامه ریزی های مناسب، امکان استفاده بهتر از منابع موجود را فراهم نمود (7). در سال های اخیر استفاده از روش های هوش مصنوعی و مدل ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
اکوبیولوژی تالابجلد ۸، شماره ۲، صفحات ۲۳-۳۴
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023